

アルカリジンケート型亜鉛めっき光沢剤 ハイパージンクシリーズ

日本表面化学株式会社 R&D センター

はじめに

鉄鋼部材は安価で加工がしやすいことから自動車、 電気製品、建材等をはじめ、様々な分野に使用されて いる。しかし、無処理の鉄鋼部材は錆びやすく、長期 にわたり美観や機械的強度を保つことが出来ない。そ こで、鉄鋼部材には何らかの防錆処理を施すのが一般 的である。

亜鉛めっきは、腐食環境下において鉄よりもイオン 化傾向が大きい亜鉛が優先的に腐食することで下地 の鉄鋼部材の腐食を抑制する「犠牲防食」効果を有し ていることから鉄鋼に対する代表的な防錆処理とし て広く用いられている。鉄鋼に亜鉛めっきを施す方法 は様々であるが、複雑な形状の品物の大量処理に向い ているのが電気亜鉛めっきである。電気亜鉛めっきは めっき液中で品物を陰極として電解することで表面 に亜鉛を析出させる方法であり「ジンケート浴」「青 化浴 | 「酸性浴 | に大別することができる。この中で も毒物を含有せず、排水処理が容易な「ジンケート浴」 が近年大きく伸びている。

電気亜鉛めっきは処理物の形状や対極との位置関 係などで電流密度勾配が発生し、これに伴うめっき膜 厚のばらつきが問題となることがあるが「ハイパージ ンク」シリーズはこの問題を大幅に改善した均一電着 型ジンケート浴用光沢剤である。

尚、亜鉛めっきはめっき後めっき皮膜を保護するた めの「化成皮膜処理」を行うのが一般的である。従来 は六価クロムを使用した「クロメート処理」が用いら れていたが 2000 年に施行された ELV 指令や 2006 年 に施行された RoHS 指令により六価クロムの使用が規 制されたことで近年は六価クロムを使用しない「三価 クロム化成処理」へ移行している1)。

当社では三価クロム化成処理剤を「トライナー」シ リーズとして展開している(別途資料参照)。

製品概要

ジャスコ・ハイパージンクシリーズは、アルカリ ジンケート浴用の光沢剤であり、めっき方法(回転 めっき、静止めっき)、品物の形状・用途等に応じた 最適なソリューションを提供すべく様々な特長ある 製品をラインナップしている。(表1)

ハイパージンクシリーズの特長

- ・優れた均一電着性
- ・均一なめっき外観
- ・三価クロム化成皮膜と好相性
- 鉄板陽極が使用可能
- ・広い管理幅・容易な浴管理

表 1. ハイパージンクのラインナップ

製品名	めっき方法	特長		
ハイパージンク 300		濃縮タイプ、ベーキング後の光沢性維持		
ハイパージンク 7900ABS	回転めっき	皮膜物性が良く、二次加工性に優れる		
ハイパージンク 7900L		重なりやすい小物にも対応		
ハイパージンク 9000ABS		皮膜物性が良く、二次加工性に優れる		
ハイパージンク 9000FG	静止めっき	耐不純金属性に優れる		
ハイパージンク 9500		濃縮タイプ、皮膜物性が良く、二次加工性に優れる		

電気めっきは陽極板に近いまたは品物の凸部が高 電流密度部、陽極板から遠いまたは凹部が低電流密 度部となりこれに伴いめっき膜厚のばらつきが発生 する。ハイパージンクは従来のジンケート浴に比べ 高電流密度部のめっき析出を抑制し、低電流密度部 のめっき析出を促進させることで優れた均一電着性 を示す。1) (図1)

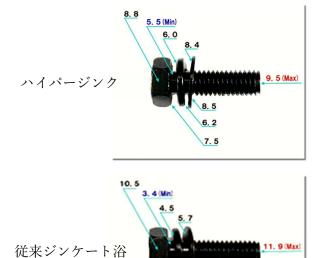
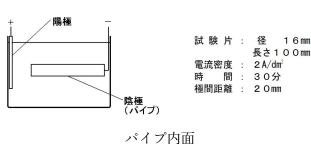



図1. ハイパージンクと従来ジンケート浴の 膜厚分布比較(回転めっき)

パイプ部品の内面などの奥まったところにあたる超 低電流密度部にもめっきが析出するツキマワリ性に も優れており、高電流密度部から低電流密度部まで 均一な光沢のあるめっき外観が得られる。片側のみ に陽極を配置して極端な電流密度勾配を作りパイプ にめっきを行った際のパイプ内面のツキマワリ性比 較を示す。(図2)

1 6 mm

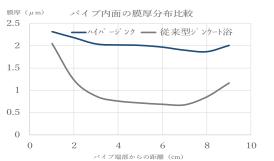


図 2. 低電流部のめっきツキマワリ性比較

また、「三価クロム化成処理」との相性が良く従来 のジンケート浴より化成皮膜が厚膜化し易いため、 高い耐食性が得られる。(図3)

処理工程

電気亜鉛めっきの一般的な工程は「前処理」「めっ き | 「後処理 | の順となる。「前処理 | は品物に付着 した汚れや錆を除去する工程であり、油汚れを取り 除く「脱脂」、錆を取り除く「酸洗」、酸洗後の表面 残渣物を取り除く「電解洗浄」の順に行う。「めっ き」は電解によりめっき皮膜を生成する工程、「後処 理しはめっき皮膜を保護する工程であり、近年は

SST (hr)	0hr	120hr	240hr	360hr	480hr
ハイパージンク		THE REAL PROPERTY AND ADDRESS OF THE PARTY AND			
従来ジンケート浴					

図 3. ハイパージンクと従来のジンケート浴の耐食性比較 三価クロム化成皮膜(IIS Z2371)

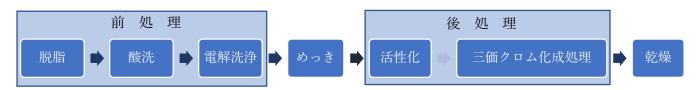


図 4. 亜鉛めっきの処理工程(一般的な処理工程)

「三価クロム化成処理」が主流である。 前処理から後処理までの工程は連続して行われるの が一般的である。(図4)

メカニズム

亜鉛めっきの光沢剤は電解による亜鉛の析出を抑 制することで均一目つ平滑なめっき皮膜を形成する 一次光沢剤とめっき皮膜に光沢性を付与する二次光 沢剤で構成されている。ハイパージンク光沢剤は一次 光沢剤に電流密度が高くなるほど強い抑制力を発揮 する特殊な水溶性ポリマー使用しており、品物内の電 流密度分布を中・低電流密度部にシフトさせている。 これにより、従来の光沢剤に比べ、均一な膜厚と低電 流部までめっき皮膜を析出させることが可能となっ た。

また、従来のジンケート浴で陽極に鉄板を使用する と陽極周辺の強い酸化雰囲気により光沢剤の分解が 促進されるため、陽極周辺の酸化雰囲気が強くなりに くい亜鉛板を使用することが必須であったが、ハイパ ージンク光沢剤に使用している特殊水溶性ポリマー は酸化雰囲気下でも分解しにくいため陽極に鉄板を 使用することができる。更に亜鉛陽極は溶解による亜 鉛濃度変動を抑えるため長期作業休止時の陽極板引 き抜き作業が必要であったが、鉄陽極では引き抜き作 業が不要となる。

おわりに

ジャスコ・ハイパージンクシリーズは、国内におけ るジンケート浴用均一電着型光沢剤の先駆けとして 20年以上の販売実績があり、現在も国内外で多数のお 客様に好評頂いている。これら多数の現場に於いて培 った実績から日々進化を続け、現場のあらゆるニーズ に対応可能な光沢剤である。

文献

1) 諏佐秀郎;表面技術, Vol. 70, No8, P388-393 (2019)